

Общество с ограниченной ответственностью «ГеоТехПроект» г. Красноярск

Свидетельство № СРО-П-145-04032010 от 24 декабря 2018 г.

Заказчик - ООО «Ядрово»

Проект реконструкции и рекультивации полигона ТКО «Ядрово»

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 5. Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений

Подраздел 3. Система водоотведения

Книга 1. Система сбора и отведения фильтрата

Том 5.3.1

ПГТ/11-18-ИОС3.1

Общество с ограниченной ответственностью «ГеоТехПроект» г. Красноярск

Свидетельство № СРО-П-145-04032010 от 24 декабря 2018 г.

Заказчик - ООО «Ядрово»

Проекта реконструкции и рекультивации полигона ТКО «Ядрово»

ПРОЕКТНАЯ ДОКУМЕНТАЦИЯ

Раздел 5. Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений

Подраздел 3. Система водоотведения

Книга 1. Система сбора и отведения фильтрата

Том 5.3.1

ПГТ/11-18-ИОС3.1

Генеральный директор

Главный инженер проекта

А В Мордвинов

А. В. Петрунин

Инв. № подл. Подпись и дата

Взам. инв.

СОДЕРЖАНИЕ ТОМА 5.3.1

Обозначение	Наименование	Стр.
ПГТ/11-18-ИОСЗ.1-С	Содержание тома 5.3.1	2
	Справка ГИПа	3
ПГТ/11-18-ИОСЗ.1-ТЧ	Текстовая часть	4-18
	Графическая часть	
Система сбора и отведени	я фильтрата отработанной карты полигона ТК проектируемая в рамках ЧС	О Ядрово,
ПГТ/11-18-ИОСЗ.1-ГЧ-1	План системы сбора и отведения фильтрата. План M 1:500	19
ПГТ/11-18-ИОСЗ.1-ГЧ-2	Продольный профиль по оси напорного коллектора фильтрата. Типовые поперечные сечения	20
ПГТ/11-18-ИОСЗ.1-ГЧ-3	Разрезы 1-13-3. Спецификация оборудования и материалов	21
ПГТ/11-18-ИОСЗ.1-ГЧ-4	Дренажная система. Узел А	22
Система сбора и отведени	я фильтрата проектируемой карты полигона Tk	О Ядрово
ПГТ/11-18-ИОСЗ.1-ГЧ-5	План системы сбора и отведения фильтрата. План M 1:500	23
ПГТ/11-18-ИОСЗ.1-ГЧ-6	Продольный профиль по оси напорного коллектора фильтрата. Типовые поперечные сечения	24
ПГТ/11-18-ИОС3.1-ГЧ-7	Разрез 4-4. Узел	25
ПГТ/11-18-ИОСЗ.1-ГЧ-8	Резервуар-накопитель фильтрата. План. Разрез	26
ПГТ/11-18-ИОС3.1-ГЧ-9	Резервуар-накопитель пермеата. План. Разрез	27
ПГТ/11-18-ИОСЗ.1-ГЧ-10	Дренажная система. Продольные профили по оси коллекторов фильтрата, пермеата, концентрата фильтрата	28
ПГТ/11-18-ИОСЗ.1-ГЧ-11	Дренажная система. Эксплуатационные колодцы ДК-2ДК-6. М 1:50	29
Приложение 1	Резервуары концентрата фильтрата PolyCorr объемом 80м³.	30-32
Приложение 2	Расчет устойчивости бортов оврага по оси трубопровода фильтрата в створе надземной прокладки	33-36
Приложение 3	Определение максимально допустимого пролета между опорами для футляра трубопровода фильтрата на участке надземной прокладки	37

Изм.	Кол.уч	Лист	№док.	Подп.	Дата	
Разраб	ботал	Аннен	кова	Alexeef	02.19	
Провеј	рил	Пацал	10	Thy	02.19	
ГИП		Петру	нин	Take	02.19	
Н. конт	гр.	Макар	ова	liany-	02.19	
				0		

ПГТ/11-18-ИОС3.1-С

Содержание тома 5.3.1

Стадия	Лист	Листов
П	1	1

ООО «ГеоТехПроект»

Документация разработана в соответствии с заданием на проектирование, результатами инженерных изысканий, градостроительным кодексом Российской Федерации, документами об использовании земельного участка для строительства, техническими регламентами, в том числе устанавливающими требования по обеспечению безопасной эксплуатации зданий, сооружений и безопасного использования прилегающих к ним территорий, и с соблюдением технических условий, действующими нормами, правилами и стандартами.

Главный инженер проекта

А.В.Петрунин И.О.Фамилия

Инв. № подл. Подпись и дата Взам. инв. №

СОДЕРЖАНИЕ

1.	ОБЩИЕ ДАННЫЕ	5
2.	НОРМАТИВНЫЕ ССЫЛКИ	8
3.	СВЕДЕНИЯ О ФУНКЦИОНАЛЬНОМ НАЗНАЧЕНИИ ОБЪЕКТА КАПИТАЛЬНОГО СТРОИТЕЛЬСТВА, СОСТАВ И ХАРАКТЕРИСТИКА ПРОИЗВОДСТВА, НОМЕНКЛАТ ВЫПУСКАЕМОЙ ПРОДУКЦИИ	
3.1.	Сведения о существующих системах водоотведения и очистки стоков	9
3.2.	Описание и обоснования принятой системы сбора и отведения фильтрата	9
3.3.	Расчет водного баланса проектируемой карты полигона ТКО	11
3.4.	Определение расчетной производительности очистных сооружений фильтрата	16
3.5.	Характеристика очистных сооружения фильтрата	16
Для	установки данных резервуаров на площадке предусмотрено устройство фундаментн	НЫХ
	плит из монолитного ж/бетона (см. раздел КР)	18
4.	ГРАФИЧЕСКАЯ ЧАСТЬ	19
5.	ПРИЛОЖЕНИЯ	28

Взам. инв. №										
Подпись и дата										
Под							ПГТ/11-18-ИОО	3 2-TL	I	
	Изм.	Кол.уч	Лист	№док.	Подп.	Дата	7.11.77.7.10.77.00		•	
	Разра	ботал	Аннен	кова	A Queef	02.19.		Стадия	Лист	Листов
подл.	Прове	рил	Пацал	10	The	02.19	Towaranaguagu	П	1	14
§ S	ГИП		Петру	нин	Medip	02.19	Текстовая часть			
NHB. I	Н. кон	троль	Макар	ова	May	_02.19		000 (кГеоТех	Проект»
Z					•					

1. ОБЩИЕ ДАННЫЕ

Проект системы водоотведения является составной частью проектной документации по реконструкции и рекультивации полигона ТКО «Ядрово» и комплекса обработки и утилизации ТКО, расположенного в Волоколамском районе Московской области.

Основанием для разработки проектной документации послужили следующие документы:

- Договор № ПГТ/11-18 от 27 марта 2018г. «Разработка проекта реконструкции и рекультивации полигона и комплекса обработки и утилизации ТКО»;
- Техническое задание на выполнение работ по разработке проектной документации «Проект реконструкции и рекультивации полигона ТКО «Ядрово»»;
- Технический отчет по результатам инженерно-геодезических изысканий для разработки проектной и рабочей документации по объекту: «Разработка проекта реконструкции и рекультивации полигона ТКО «Ядрово» и комплекса обработки и утилизации ТКО» (шифр 4718-ИГДИ), выполненных ООО «КомплексПроект» в 2018г.;
- Технический отчет по результатам инженерно-геологических изысканий для разработки проектной и рабочей документации по объекту: «Разработка проекта реконструкции и рекультивации полигона ТКО «Ядрово» и комплекса обработки и утилизации ТКО» (шифр 4718-ИГДИ), выполненных ООО «КомплексПроект» в 2018г.:
- Технический отчет по результатам инженерно-гидрометеорологических изысканий для разработки проектной и рабочей документации по объекту: «Разработка проекта реконструкции и рекультивации полигона ТКО «Ядрово» и комплекса обработки и утилизации ТКО» (шифр 4718-ИГДИ), выполненных ООО «КомплексПроект» в 2018г.;
- Технический отчет по результатам инженерно-экологических изысканий для разработки проектной и рабочей документации по объекту: «Разработка проекта реконструкции и рекультивации полигона ТКО «Ядрово» и комплекса обработки и утилизации ТКО» (шифр 4718-ИГДИ), выполненных ООО «КомплексПроект» в 2018г.

№ подл.	Подпись и дата	Взам. инв. №	

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Территория производства работ расположена на западе Московской области в Волоколамском районе. Землеотвод представлен в виде четырех участков различного назначения. Участки расширения полигона захоронения ТКО «Ядрово» расположены в Волоколамском районе Московской области, городское поселение Волоколамск, в 500 м югозападнее д. Ядрово. Общая площадь земельных участков в границах землеотвода составляет 26,6 га. Участки полигона расположены на склоне местного водораздела, вблизи бровки, ниже которой долина реки Городня.

Климатические характеристики ЗУ

Согласно климатическому районированию России находится в II В климатическом подрайоне (СНиП 23-01-99), в строительно-климатической зоне с умеренно-континентальными климатическими условиями. Климатические условия формируются под влиянием атлантических и континентальных воздушных масс. Указанная климатическая зона характеризуется избыточным увлажнением с умеренно-континентальным климатом.

Гидрогеологические условия ЗУ

Гидрогеологические условия района работ обусловлены расположением в пределах северной Зеленоградско-Сходненско-Рузского Клинско-Дмитровского части блока гидрогеологического района Московского артезианского бассейна. Подземные воды приурочены к четвертичным и каменноугольным отложениям. Для промышленного хозяйственно-питьевого водоснабжения используются подземные воды каменноугольных отложений, эксплуатируемые артезианскими скважинами. Участок не попадает водоохранные зоны водозаборных скважин, разведанных для водоснабжения района. Ближайшие эксплуатационные скважины, оборудованные на подольско-мячковский горизонт, находятся на расстоянии более 5 км к западу от участка работ. Водоносные горизонты в каменноугольных отложениях защищены от проникновения загрязнения толщей моренных суглинков юрского возраста суммарной мощностью около 40 Для ГЛИН нецентрализованного хозяйственно-питьевого водоснабжения деревень и садовых участков используются подземные воды преимущественно в четвертичных отложениях, вскрываемые скважинами и колодцами.

В соответствии с системой <u>почвенно-географического</u> районирования район работ относится к Смоленско-Московскому округу дерново-подзолистых глинистых и суглинистых почв на покровных отложениях, подстилаемых ледниковыми и водно-ледниковыми

<i>†</i> o⊔
Инв. Nº подл.

NHB.

Взам.

цпись и дата

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Лист

7

отложениями. В геоботаническом отношении участок расположен в пределах Волоколамского елового подрайона района елово-широколиственных лесов Клинско-Дмитровской гряды.

<u>Гидрографическая сеть</u> района принадлежит бассейну реки Волги. В 100-110 м югозападнее полигона протекает река Городня, правый приток реки Ламы. Ширина реки до 3 м, глубина до 0,5 м. Длина реки составляет около 11 км. Согласно Водному Кодексу РФ размер водоохраной зоны реки Городня составляет 50 м. В ложбинах двух временных водотоков (юго-восточнее и северо-западнее полигона) на момент проведения исследований сток отсутствовал.

Взам. инв. №	
Подпись и дата	
№ подл.	
	1

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

2. НОРМАТИВНЫЕ ССЫЛКИ

Данный проект системы водоотведения поверхностного стока разработан в соответствии с действующими нормами и правилами:

- СП 32.13330.2013 «Канализация. Наружные сети и сооружения». Актуализированная редакция СНиП 2.04.03-85;
- СП 42.13330.2011 «Градостроительство. Планировка и застройка городских и сельских поселений». Актуализированная редакция СНиП 2.07.01-89*;
- СП 18.13330.2011 «Генеральные планы промышленных предприятий». Актуализированная редакция СНиП II-89-80*;
- СП 131.13330.2012 «Строительная климатология» Актуализированная редакция СНиП 23-01-99* «Строительная климатология»;
- ГОСТ 17.1.3.13-86. Общие требования к охране поверхностных вод от загрязнения;
- СанПиН 2.1.5.980-00. Водоотведение населённых мест, санитарная охрана водных объектов. Гигиенические требования к охране поверхностных вод;
- СанПиН 2.2.1/2.1.1.1200-03 (новая редакция 25.04.2014). Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. Утв. постановлением государственного санитарного врача РФ от 25.09.2007 № 74;
- СанПиН 2.1.4.1110-02 «Зоны санитарной охраны источников водоснабжения и водопроводов питьевого назначения»;
- Методическое пособие НИИ ВОДГЕО 2015 «Рекомендации по расчёту систем сбора, отведения и очистки поверхностного стока с селитебных территорий, площадок предприятий и определению условий выпуска его в водные объекты»;
- СП 40-102-2000 «Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов».
- СП 104.13330.2016 Инженерная защита территории от затопления и подтопления.
- РД 1.65-82. Указания по проектированию дренажей промышленных площадок.
- «Руководство по проектированию дренажей зданий и сооружений»,
 Москомархитектура, Москва, 2000г

подл.	Подпись и дата	Взам. инв. №	

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

ПГТ/11-18-ИОС3.2-ТЧ

Лист

3.1. Сведения о существующих системах водоотведения и очистки стоков

В зоне проектирования объекта, существующие сети водоотведения отсутствуют.

Проектом предусматривается отвод сточных вод, в зависимости от состава, по следующим системам:

- ливневая канализация;
- фильтрат ТКО.

3.2. Описание и обоснования принятой системы сбора и отведения фильтрата

Полигон ТКО Ядрово представлен двумя картами – отработанной (рекультивируемой) и проектируемой, расположенных на противоположных бортах оврага.

В рамках ЧС для отработанной карты ТКО разрабатывается временная самостоятельная система сбора и отведения фильтрационных стоков в существующие пруды-накопители напорно-принудительным способом, откуда загрязненные стоки вывозятся в специализированные места утилизации. В дальнейшем проектом предусматривается объединение двух систем в единую безнапорную систему сбора и отведения фильтрата с резервуаром-накопителем и комплексом очистных сооружений, устраиваемых в границах землеотвода ТКО «Ядрово».

В рамках ЧС система для сбора фильтрата отработанной (рекультивируемой) карты предусматривает следующие сооружения: существующую одиночную горизонтальную дрену в теле ТКО; самотечный коллектор от существующей дрены; емкость-копань; кольцевой дренаж в емкости-копани; дренажный колодец из сборных железобетонных элементов, предназначенный для сбора и отведения фильтрата в насосные; самотечный коллектор от дренажного колодца в насосные; две дренажные насосные станции, напорный коллектор и пруды-накопители. На дне и откосах емкости-копани предусмотрен защитный экран из геомембраны, предотвращающий фильтрацию загрязненных стоков из копани в грунтовые воды.

Тело отработанного полигона защищено от попадания в него осадков противофильтрационным экраном. Сбор фильтрата из закрываемого ТКО осуществляется в два этапа: часть фильтрата, образующегося в теле рекультивируемого полигона, перехватывает существующая дрена; остальной, не попадающий в дрену фильтрат поступает

d и ⊲ои⊓доП	
Инв. № подл.	

MHB.

Взам.

ата

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Из дрены в теле отвала фильтрат самотеком отводится трубой коллектора БНК-1 в сборный колодец, расположенный в емкости копани. Из кольцевого дренажа фильтрат попадает так же в сборный колодец. Из колодца образующийся фильтрат самотеком по коллектору БНК-2 поступает в дренажные насосные станции, работающие по принципу сообщающихся сосудов. Из дренажных насосных фильтрат перекачивается по напорному трубопроводу в пруды-накопители. Напорная система перекачки фильтрата предусмотрена как временная.

Существующая дрена проложена в основании юго-западного откоса отвала, устроена из перфорированной полиэтиленовой трубы диаметром Ø160x12мм с уклоном в сторону магистрального коллектора БНК-1, прокладываемого в теле обратной засыпки емкостикопани. Дно и откосы емкости-копани экранированы геомембраной. Кольцевой дренаж в емкости-копани запроектирован из полиэтиленовой перфорированной трубы Перфокор диаметром Dy300 с обмоткой геотекстилем в два слоя и устройством обратного фильтра из крупнозернистого песка и гравия изверженных пород (d частиц гравия 5-10мм), толщина слоев фильтра t=30см. Уклон обеих ветвей дренажа принят i=0,005 в сторону дренажного сборного колодца. Подготовка под систему дренажа и сборный колодцец на системе дренажа принята из песка, который служит одновременно защитным слоем геомембраны. Толщина защитного слоя принята 105см.

Безнапорные коллекторы БНК-1 и БНК-2 устраиваются из полиэтиленовой ПНД трубы диаметром Ø160x9,1мм.

Напорный трубопровод запроектирован из ПНД трубы Ø 110x6,3мм подземной прокладки с переменным уклоном.

Напорный и безнапорные коллекторы устраиваются в специально подготовленных траншеях - с подготовкой из песка толщиной t=15см и засыпкой пазух трубы и над трубой толщиной 30см песком с уплотнением Куп≥0,95.

Дренажный колодец-сборник фильтрата выполняется из сборных железобетонных элементов по ГОСТ 8020-90 диаметром D1500.

Дренажные насосные станции запроектированы из сборных железобетонных колец круглого сечения диаметром D2000. Расстояние между насосными в свету – 1,5м. Насосные оборудованы погружными насосами ГНОМ НПК 30-30 (1-рабочий, 1-резервный).

Система сбора и отведения фильтрата проектируемой карты, расположенной на правом борту оврага ручья, образуется двумя ветвями дрен в южной части основания ТКО, объединенных дренажным колодцем для сбора фильтрата; безнапорным дренажным коллектором, резервуаром-накопителем фильтрационных стоков и специализированными очистными сооружениями.

I						
ĺ						
ĺ	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Дрены устраиваются из дренажной ДГТ-ПНД трубы Dy200 в фильтре заводского изготовления с уклоном в сторону колодца. Дрена укладывается поверх противофильтрационного экрана основания отвала с устройством дренирующего слоя из крупнозернистого песка. Коллектор запроектирован из полиэтиленовой ПНД трубы диаметром Dy200. Дренажный колодец устраивается из сборных ЖБ колец круглого сечения диаметром Dy2000 с защитной футеровкой, устойчивой к агрессивной среде фильтрата.

Основание проектируемого отвала запроектировано с уклоном, достаточным для свободного стока из отвала к дренам. Дрены собирают загрязненный инфильтрат атмосферных осадков, поступающих через толщу складируемых отходов при формировании отвала, а также жидкость, образующуюся в процессе химических реакций внутри тела отвала. Загрязненный сток, поступивший из дрен в дренажный колодец, отводится коллектором в резервуар-накопитель фильтрата. Сброс фильтрата в резервуар из дренажного колодца осуществляется в самотечном режиме. Фильтрационный сток из резервуара-накопителя забирается на специализированные очистные сооружения. Трасса коллектора при прохождении через овраг прокладывается на эстакаде в защитном футляре из стальной трубы Ø355,6х4мм и в теплоизоляции из ППУ скорлуп толщиной 60мм с уклоном i=0,01. На левом борту оврага (по течению ручья) дренажный коллектор устраивается в подземной прокладке с уклоном i=0,007. Коллектор устраивается в специально подготовленных траншеях - с подготовкой из песка толщиной t=15см и засыпкой пазух трубы и над трубой толщиной t=30см песком с уплотнением Куп≥0,95.

На поворотах дренажного коллектора в плане, в местах перемены уклона, в точках перепадов и в месте врезки коллектора дренажной системы отработанной карты устраиваются смотровые колодцы из сборных железобетонных элементов по ГОСТ 8020-90 круглого сечения диаметром D1500.

Проектом объединенной безнапорной системы сбора и отведения фильтрата предусматривается устройство на коллекторе, отводящем фильтрат из емкости-копани в дренажные насосные, дополнительный узловой железобетонный канализационный колодец перед ДНС и коллектор из трубы ПНД.

Узловой колодец, объединяющий дренажную систему отработанной карты с системой отведения проектируемого полигона, устраивается из сборных железобетонных элементов по ГОСТ 8020-90 круглого сечения диаметром D1500, труба коллектора запроектирована диаметром Dy200 с уклоном i=0,0371.

3.3. Расчет водного баланса проектируемой карты полигона ТКО

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

MHB.

Взам.

Подпись и дата

подл.

NHB. Nº

- 1. «Управление водным балансом полигона ТБО на примере полигона в г. Краснокамске. Вайсман Я.И., Чудинов С.Ю., Кравченко Д.С.».
- 2. СТП ВНИИГ 210.01.HT-05 «Методика расчета гидрологических характеристик техногенно-нагруженных территорий»

Фильтрат, образующийся в теле полигона, представляет особую опасность для окружающей среды, т.к. является токсичным раствором с минерализацией до нескольких десятков грамм на 1 л, содержанием ионов аммония, хлора и других макрокомпонентов до нескольких грамм на 1 л, высокими концентрациями тяжелых металлов (цинк, свинец, никель, хром, кадмий и др.) и органических соединений.

Состав и количество образующегося фильтрата зависят от этапа жизненного цикла полигона и могут быть различными для разных полигонов ТБО. Максимальные объемы фильтрата образуются на абсолютно заполненном полигоне перед рекультивацией.

Наиболее распространенными являются методики, основанные на составлении водного баланса полигона ТБО [3, 4]. Так, уравнение водного баланса в период максимального образования фильтрата можно представить в следующем виде:

$$O\Phi = (AO + OB + BEX) - (ИС + BHO + ПС + EF + ПEX),$$
 где $O\Phi$ — объем фильтрата;

АО — атмосферные осадки, выпавшие на полигон;

ОВ — отжимная влага;

ВБХ — выделение воды при биохимических реакциях;

ИС — испарение с поверхности полигона;

ВНО — влага, расходуемая на насыщение отходов до полной влагоемкости;

ПС — поверхностный сток;

БГ — потери воды с биогазом;

ПБХ — поглощение воды при биохимических реакциях.

• атмосферные осадки, выпавшие на полигон (AO) (согласно СТП ВНИИГ 210.01.НТ- 05 «Методика расчета гидрологических характеристик техногенно-нагруженных территорий»; далее — Методика):

```
AO = 0,001 \times F1 \times h1 \times Kp = 0,001 \times 89030 \times 622 \times 1,43 = 79188,62 \text{ м3/год}
```

где F1 — площадь основания полигона, м2;

h1 — слой выпавших осадков, мм/год (месяц) (по данным наблюдений на ближайшей метеостанции);

Кр — коэффициент перехода от средних многолетних годовых величин осадков к осадкам 5%-ной обеспеченности (приложение 1 к Методике);

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	

NHB.

Взам.

Подпись и дата

№ подл.

подл.

읟

• испарение с поверхности полигона (ИС) (согласно Методике):

 $MC = 0.01 \times F2 \times h2 \times Ke \times Kвп = 0.01 \times 107726.3 \times 50.6 \times 0.887 \times 0.56 = 27075.96 \text{ м3/год}$

где F2 — площадь поверхности полигона, м2;

h2 — величина испарения, см/год (месяц) (определяется с помощью формулы (6) Методики и приложения 2 к Методике);

Ке — коэффициент перехода от средней многолетней годовой испаряемости с техногенно-нагруженных территорий к испаряемости с различной вероятностью превышения;

Квп — поправочный коэффициент к среднему многолетнему испарению с естественных ландшафтов для различных видов поверхностей;

• отжимная влага (ОВ):

OB = Ков × (AO – ИС) = 0.5 × (79188,62 - 27075,96) = 26056,33 м3/год где Ков = 0.5 — опытный коэффициент (по данным, приведенным в [5]);

- выделение воды при биохимических реакциях (ВБХ) равно поглощению воды при биохимических реакциях (ПБХ), т.е. разницу между биохимически образуемой и потребляемой водой можно считать равной нулю [6];
 - влага, расходуемая на насыщение отходов до полной влагоемкости (ВНО):

ВНО = $0.15 \times V$ при плотности отходов 1.0 т/м3,

BHO = $0.15 \times 400000 \times 0.8 = 48000$ м3/год,

где V — объем размещенных отходов, м3/год [7];

V = 400000 м3/год, плотность отходов уотх = 0,8 т/м3,

• поверхностный сток (ПС):

ПС = 0, если сток отводится от полигона вместе с фильтратом;

ПС = 0,03 × AO, если сток отводится на локальные очистные сооружения [4];

Принимаем на период эксплуатации ПС = 0;

• потери воды с биогазом (БГ):

 $\mathsf{Б}\mathsf{\Gamma} = 0.00006 \times \mathsf{V}\mathsf{б}\mathsf{\Gamma} = 0.00006 \times 32000000 = 1920 \,\mathsf{M}^3/\mathsf{год}$

где Vбг — объем образующегося биогаза, м³/год [4].

$$VB\Gamma = q \cdot G = 100 \times 400000 \times 0.8 = 32\,000\,000\,\text{m}^3,\tag{7}$$

где q – величина удельного образования биогаза из одной тонны ТКО,

q = 100 m3/T [8];

G – масса поступающих отходов, м3/год, G = 400000 м3/год

В формуле (1) не учтены:

• подача воды на поверхность полигона для увлажнения в пожароопасный период (предполагается, что большая часть воды испаряется);

ı						
I						
ł	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата
1		,	•			—

- поверхностный сток с прилегающих территорий, расположенных выше по рельефу (предполагается, что предусмотрены нагорные канавы, перехватывающие поверхностные стоки);
- поступление воды из подземных и поверхностных водных объектов (предусмотрены мероприятия по исключению данных воздействий);
- утечки фильтрата (предусмотрены мероприятия по герметизации основания и бортов полигона).

```
O\Phi = (AO + OB + BБX) – (ИС + BHO + ПС + БГ + ПБX) = 
= (79188,46 – 26056,33 + 0) – (27075,96 + 48000 + 0 + 1920 + 0) =28248,99 м<sup>3</sup>/год
```

Для оценки динамики изменения объемов образования фильтрата в течение года расчеты выполнялись для каждого месяца. Количество осадков принималось по данным метеослужбы г.Волоколамска.

Испарение с поверхности полигона и величина снегозапасов рассчитывались в соответствии с Методикой и по справочным данным. В связи с отсутствием достоверных данных для разных периодов года потери воды с биогазом, объемы отжимной влаги и влаги, расходуемой для насыщения отходов до полной полевой влагоемкости, принимались одинаковыми для каждого месяца года. Результаты расчетов приведены в таблице 1.

Взам. инв. №								
Подпись и дата								
Инв. № подл.	Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата	ПГТ/11-18-ИОСЗ.2-ТЧ	Лист

Таблица 1. Результаты расчета водного баланса полигона ТКО

Месяц	Осадки 50%-ной обеспеченности, мм	Осадки 5%-ной обеспеченности, мм	Количество воды, поступающей с осадками, м³/месяц	Среднее месячное испарение 95%- ной обеспеч., см	Испарение с поверхности полигона, м³/месяц	Количество воды, поступающей в тело полигона, с учетом испарения и снегозапасов, м³/мес	Потери воды с биогазом, м³/месяц	Влага, расходуемая на насыщение отходов до полной полевой влагоемкости, м³/месяц	Отжимная влага, м³/месяц	Поверхностный сток, м³/месяц	Объем фильтрата, м³/месяц	Объем фильтрата, м³/сут
			AO		ИС	АО-ИС	БГ	вно	ОВ	ПС	ОФ	ОФ
Ноябрь	47	67,21	5983,70	0,4	214,04	5769,67	160	4000	2884,834	0	4494,50	149,8167
Декабрь	38	54,34	4837,9	0	0,00	4837,89	160	4000	2418,945	0	3096,84	99,89791
Январь	31	44,33	3946,7	0	0,00	3946,7	160	4000	1973,35	0	1760,05	56,7758
Февраль	30	42,9	3819,39	0	0,00	3819,39	160	4000	1909,694	0	1569,08	56,03859
Март	29	41,47	3692,07	0,7	374,57	3317,51	160	4000	1658,753	0	816,26	26,33091
Итого:	175	250,25	22279,76	1,1	588,61	21691,15	800	20000	10845,57	0	11736,72	
Апрель	35	50,05	4455,95	4,2	2247,41	2208,54	160	4000	1104,27	0	-847,19	-28,2397
Май	54	77,22	6874,90	9,6	5136,94	1737,96	160	4000	868,9775	0	-1553,07	-50,0989
Июнь	70	100,1	8911,90	11,6	6207,14	2704,77	160	4000	1352,383	0	-102,85	-3,4284
Июль	92	131,56	11712,79	10,8	5779,06	5933,73	160	4000	2966,864	0	4740,59	152,9223
Август	74	105,82	9421,16	7,2	3852,71	5568,45	160	4000	2784,224	0	4192,67	135,2475
Сентябрь	64	91,52	8148,03	4,1	2193,90	5954,12	160	4000	2977,062	0	4771,19	159,0395
Октябрь	58	82,94	7384,15	2	1070,20	6313,95	160	4000	3156,976	0	5310,93	171,3203
Итого:	447	639,21	56908,87	49,5	26487,36	30421,51	1120	28000	15210,76	0	16512,27	
Итого:	622	889,46	79188,62	50,6	27075,96	52112,66	1920	48000	26056,33	0	28248,99	

Представленные в таблице результаты расчетов дают оценку количества образующегося фильтрата для многоводного года (осадки 5%-ной обеспеченности). Объемы образования фильтрата в многоводные годы и неравномерность его образования говорят о необходимости строительства емкости-накопителя фильтрата и очистных сооружений.

Таким образом среднесуточный объем фильтрационного стока в самый многоводный месяц составляет 171,32 м³/сут.

По установленным данным, с рекультивируемой карты ТКО фильтрат поступает в объеме 15 м³/сут.

Объем емкости-накопителя фильтрационных стоков рассчитан на прием загрязненных стоков в размере трехсуточной производительности очистных сооружений фильтрата.

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Взам. инв. №

Подпись и дата

Инв. № подл.

3.4. Определение расчетной производительности очистных сооружений фильтрата.

Производительность очистных сооружений принята из расчета притока фильтрата с двух карт ТКО:

$$Q_{\text{oy.}} = (W_{\phi.\text{cym.}1} + W_{\phi.\text{cym.}2}) = 171,32 + 15,0 = 186,32 \text{ M}^3/\text{cyt.}$$

К установке принимаем очистные сооружения производительностью 200 м³/сут.

3.5. Характеристика очистных сооружения фильтрата.

Система очистки особым образом подготовлена к очистке фильтрата полигона по захоронению твердых бытовых отходов.

Данным проектом в системе очистки предусмотрено использование «Установки обратного осмоса» в комплексе готовых ОС фильтрата производительностью 200 м³/сут, поставляемых и монтируемых под ключ ООО «Экоком».

Состоит установка обратного осмоса из нескольких секций:

- накопительные резервуары для очищаемой воды типа отстойника;
- секция предварительной очистки, включающая 3 ступени;
- секция обратного осмоса (глубокая очистка), включающая 3 ступени;
- накопительные резервуары для пермеата.
- Коммуникации, связывающие секции между собой (трубопроводы и газоходы).

Процесс очистки в данных ОС реализован путем трех ступеней очистки. Очистные сооружения фильтрата включают в себя все оборудование, необходимое для процесса обратного осмоса (трубы, насосы, фильтры), а также устройства мониторинга и все приборы, требуемые для проведения измерения и управления. Основное технологическое оборудование ОС (в составе узлов предварительной механической очистки, механической доочистки (фильтрации) стоков, очистки стоков с применением мембранных технологий (обратноосмотических мембран), промывки оборудования (в т.ч. химической), приготовления и дозирования реагентов) расположены в здании блочно-модульного исполнения.

Технологическая схема Установки обратного осмоса по очистке фильтрата полигона производительностью представлена на рисунке 1.

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Рис. 1. Технологическая схема Установки обратного осмоса по очистке фильтрата полигона.

Накопительный резервуар для очищаемой воды – резервуар сбора фильтрата устанавливается перед ОС фильтрата. Проектом предусмотрен резервуар из монолитного железобетона с внутренним изоляционным слоем, стойким к химически агрессивным стокам. Объем резервуара принят для возможности сбора стоков фильтрата в течение 3 суток самого многоводного месяца в году. Т.к. приток фильтрата составляет ~ 200 м 3 /сут, то полезный объем резервуара принят $V_{\text{п.рез}}$ = 600 м 3 .

Принимаем конструктивные размеры резервуара:

$$V_{pe3}$$
= 15 × 15 × 4,0(h)) = 900,0 M^3 .

Конструкцию резервуара см. раздел КР.

Накопительный резервуар для очищенных стоков – пермеата рассчитан на объем очищенных стоков после ОС фильтрата, образующийся в течение 3 суток. Резервуар запроектирован из сборного железобетона. Объем очищенных стоков составляет 75 % от первоначальных стоков фильтрата. Таким образом, полезный объем **V**_{п.рез}= **450м**³.

Принимаем конструктивные размеры резервуара:

$$V_{pe3}$$
= 10 × 15 × 3,6(h)) = 540,0 M^3

Конструкцию резервуара см. раздел КР.

чои⊔бо⊔	
Инв. № подл.	

NHB.

Взам.

идата

Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

Очищенные стоки фильтрата предусмотрено использовать для полива зеленых насаждений, травяного покрова участка полигона, а также для пылеподавления дорожных покрытий полигона. Забор технической воды выполняется автонасосами поливальных машин.

Интенсивность использования технической воды зависит от погодных и технологических условий.

Необходимое количество воды на пылеподавление дорожных покрытий – объем поливомоечных вод (СП 32.13330.2012):

 $\mathbf{W}_{M} = m \times F_{M} / 1000 = 1,2 \times 8107 / 1000 = 9,730 \, \mathbf{m}^{3} / \mathbf{cyt}$ где,

т - удельный расход воды на 1 мойку дорожных покрытий; при механизированной уборке территории принимается 1,2 -1,5 л/м²;

 ${\sf F}_{\sf M}$ - площадь твердых покрытий, подвергающихся мойке, ${\sf M}^2$.

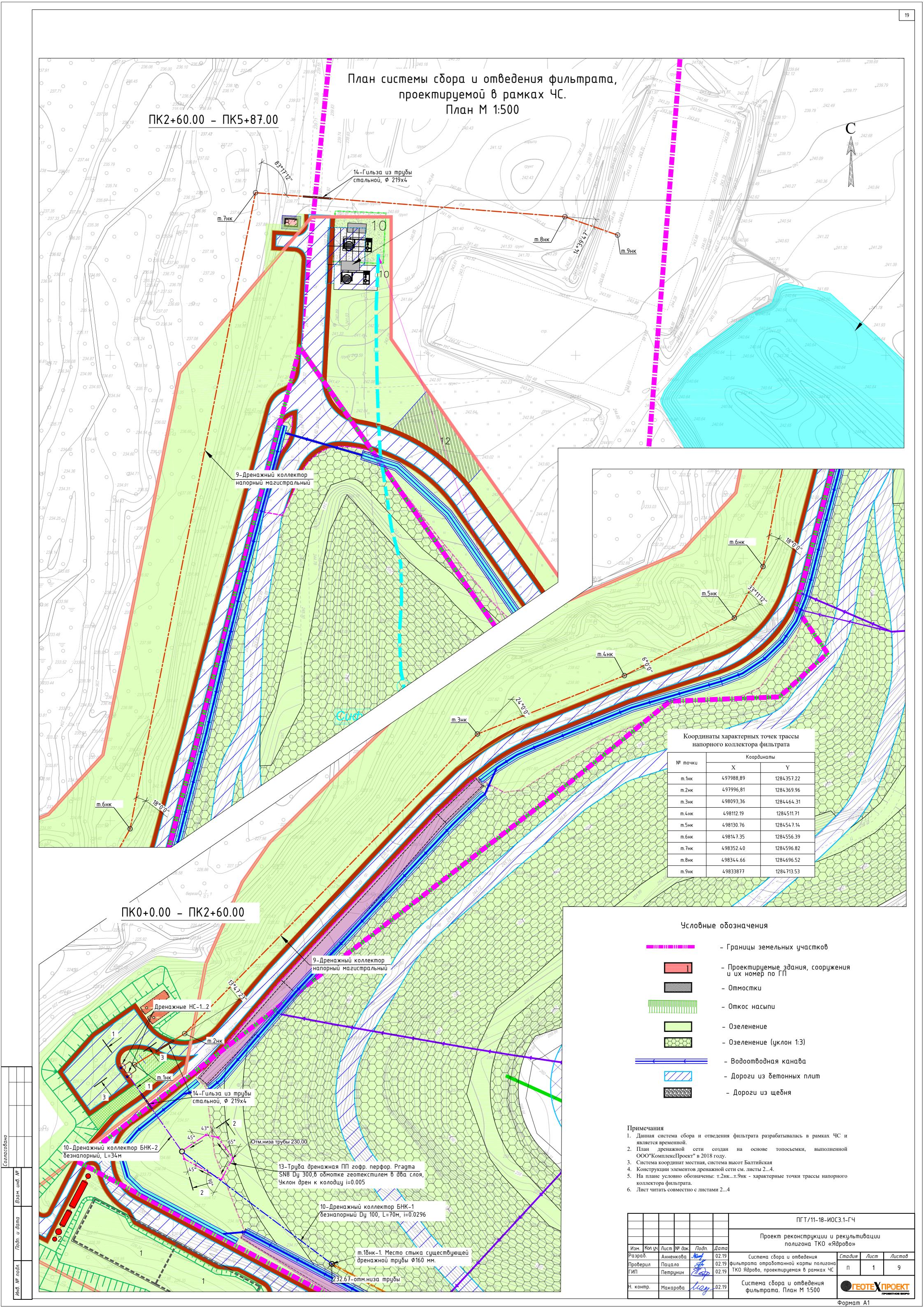
Необходимое количество воды на полив травяного покрова (СП 30.13330.2012):

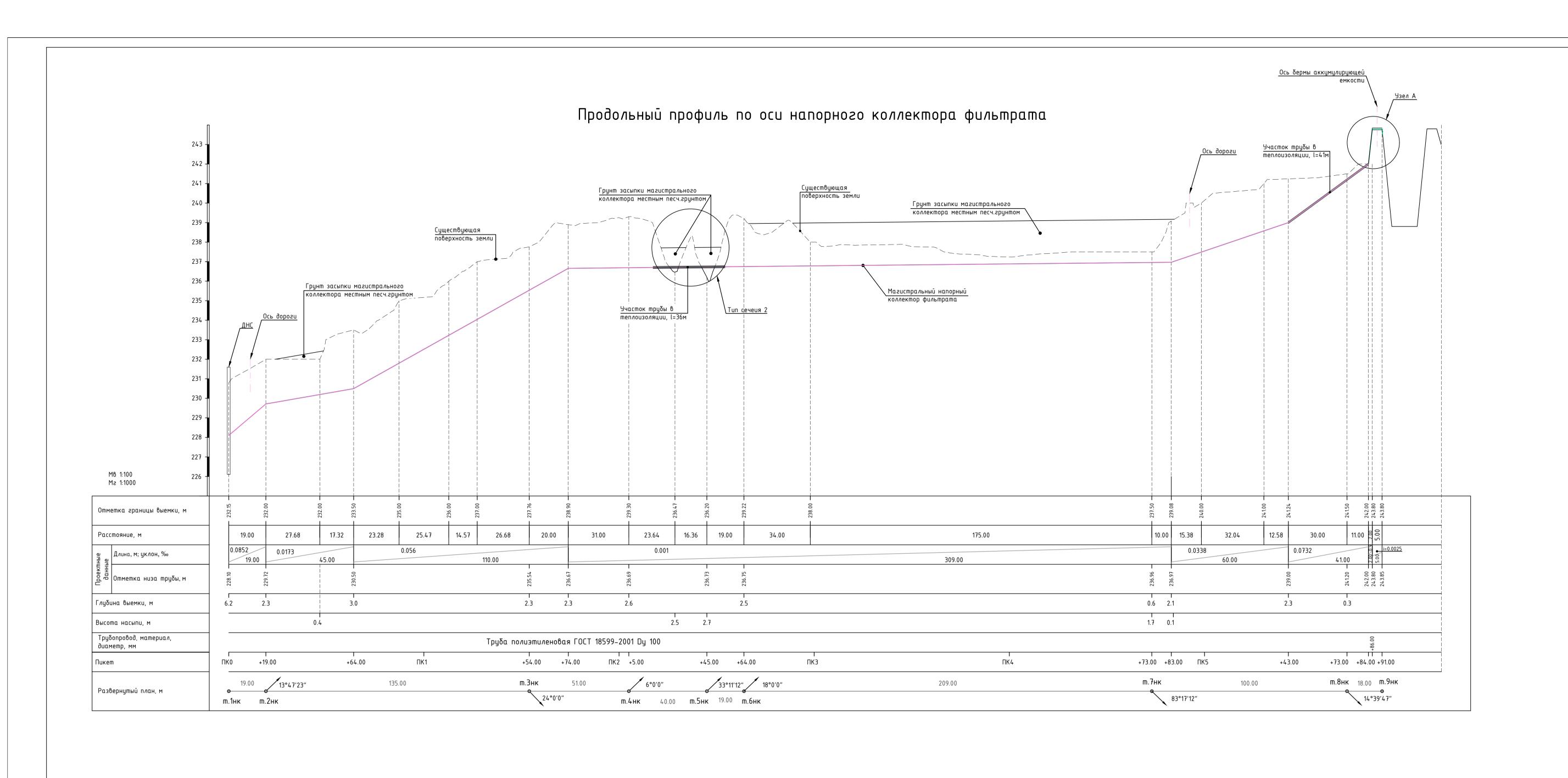
 $\mathbf{W}_{\text{полив зел.}} = \mathbf{m}_{\text{полив}} \times \mathbf{F}_{\text{зел.}} / 1000 = 3 \times 19561 / 1000 = \mathbf{58,683} \text{ м3/сут}$ где,

m - удельный расход воды на полив травяного покрова принимается 3 л/м²;

F_{зел} - площадь озеленения, м².

Насосное оборудование для забора стоков на ЛОС и сброса очищенных вод в резервуар накопитель заложено в комплекте очистных сооружений. Напорные трубы от насоса, перекачивающего фильтрат в резервуар-усреднитель и подающие его на ЛОС выполнены из напорных полиэтиленовых труб по ГОСТ 18599-2001.

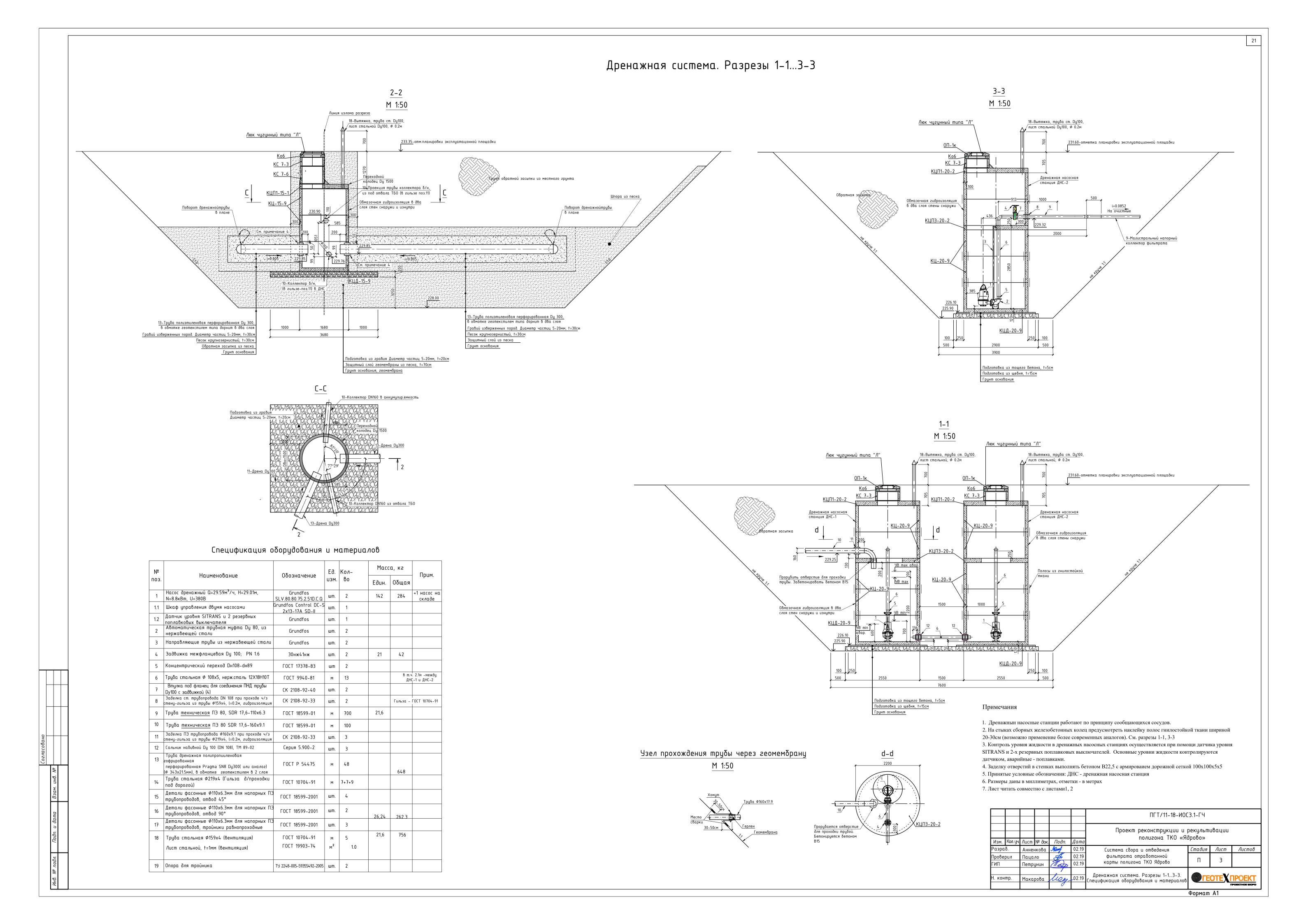

Накопительные резервуары для сбора концентрата фильтрата, выделенного из стоков фильтрата приняты стеклопластиковые производства компании «POLY GROUP».

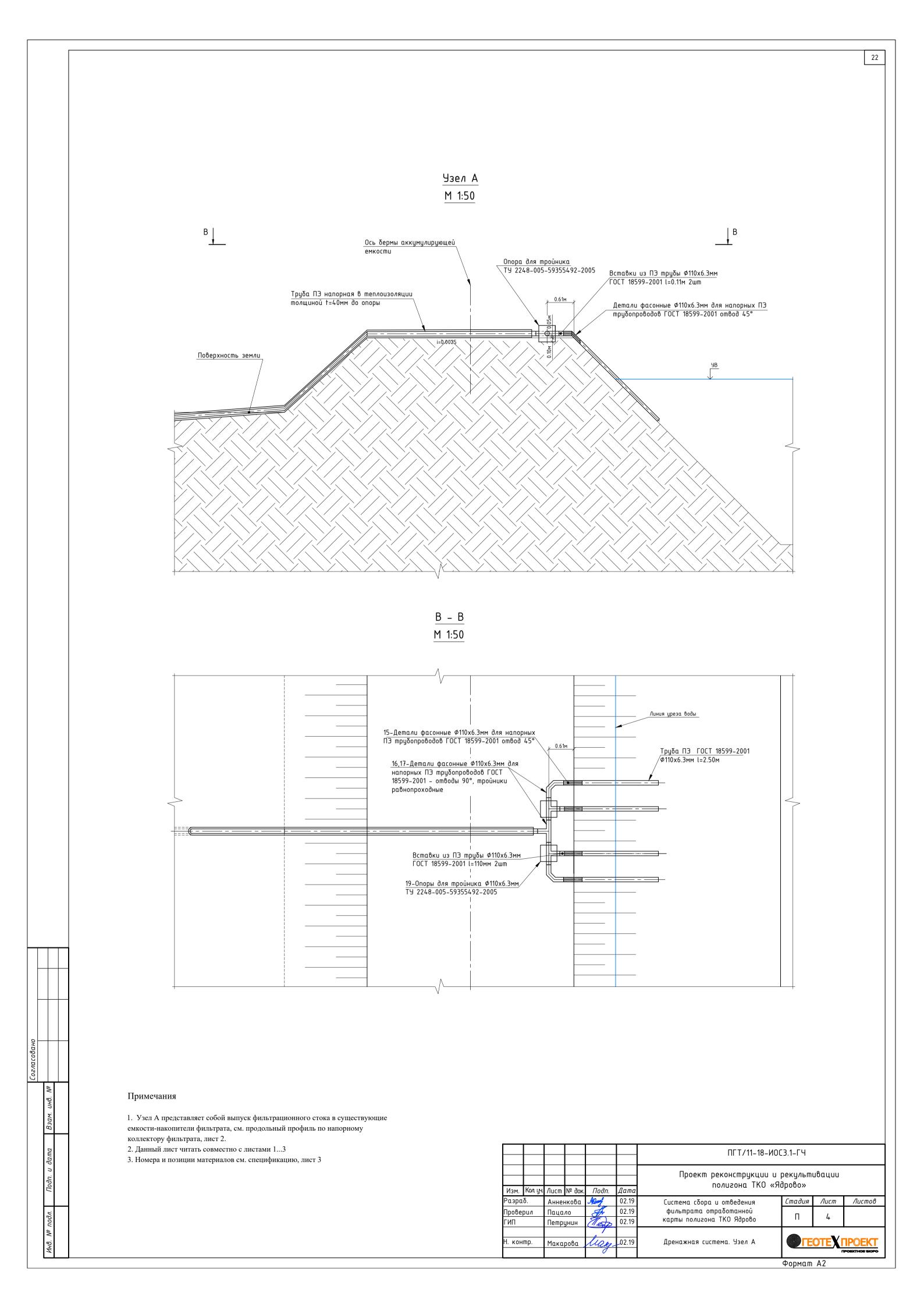

Объем концентрата фильтрата составляет 25 % от первоначальных стоков фильтрата. Таким образом полезный объем **V**_{п.рез}= **150 м**³. К установке на площадке приняты 2 резервуара объемом 80 м³.

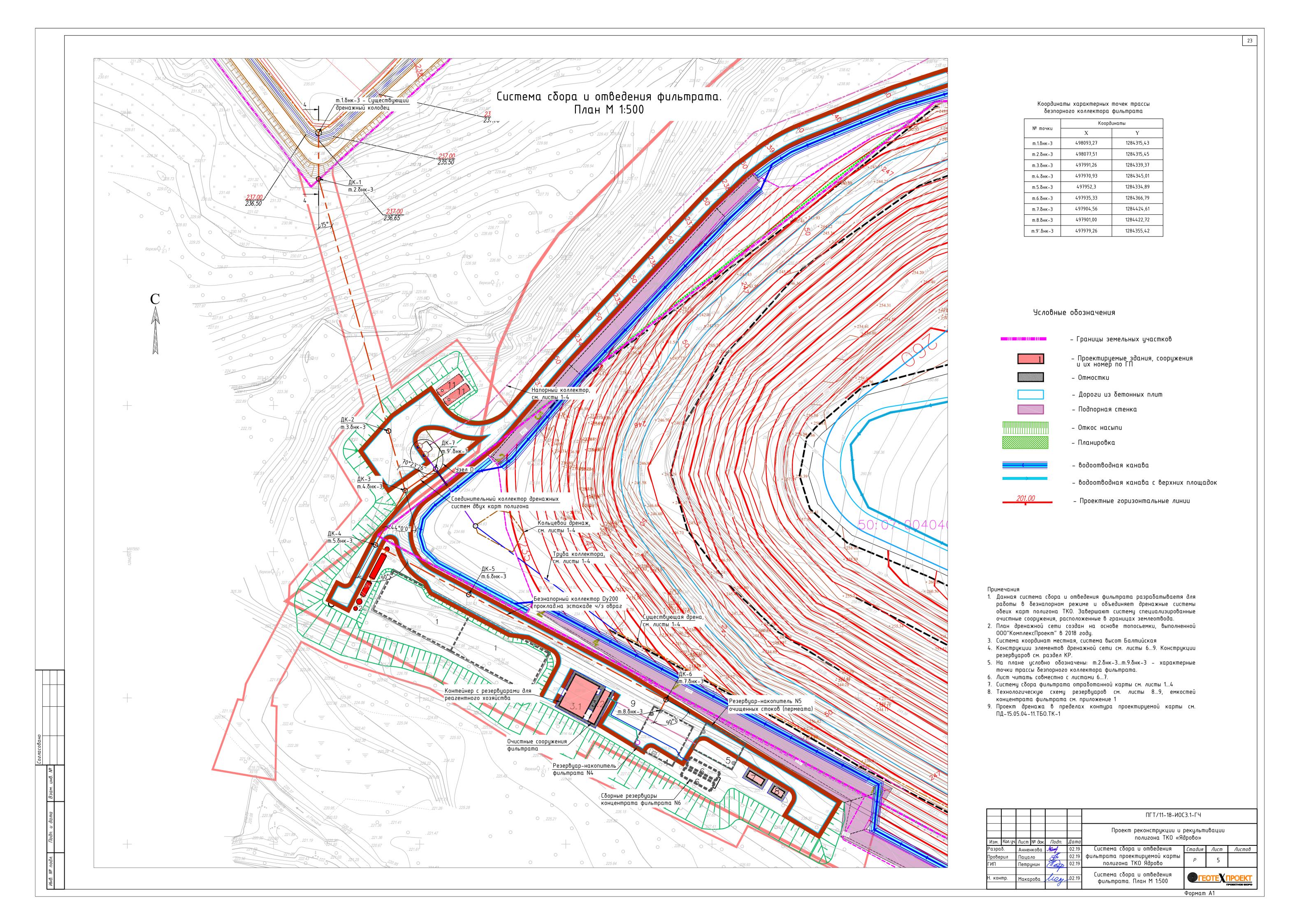

Для установки данных резервуаров на площадке предусмотрено устройство фундаментных плит из монолитного ж/бетона (см. раздел КР).

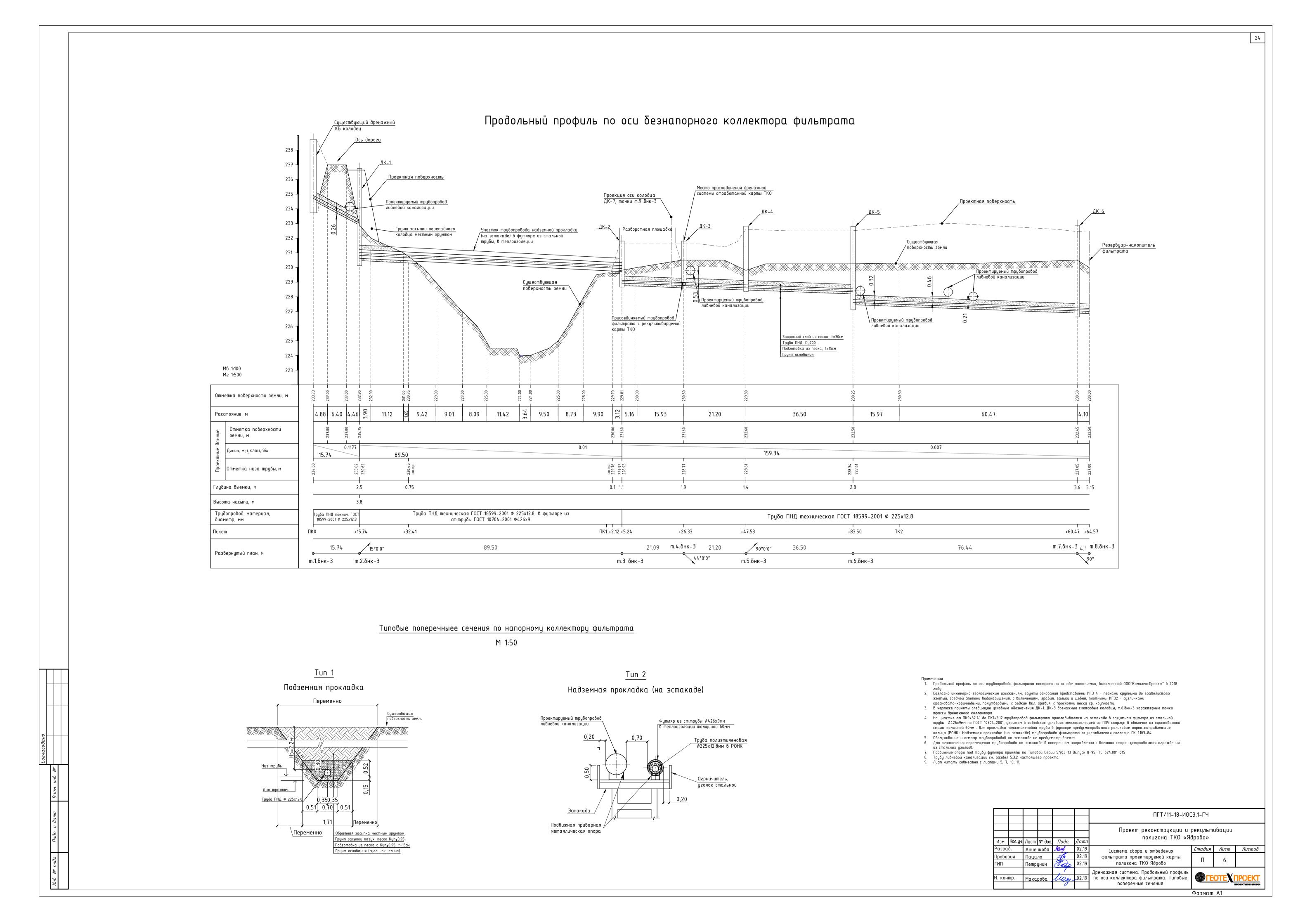
Взам. инв. №	
Подпись и дата	
1нв. № подл.	

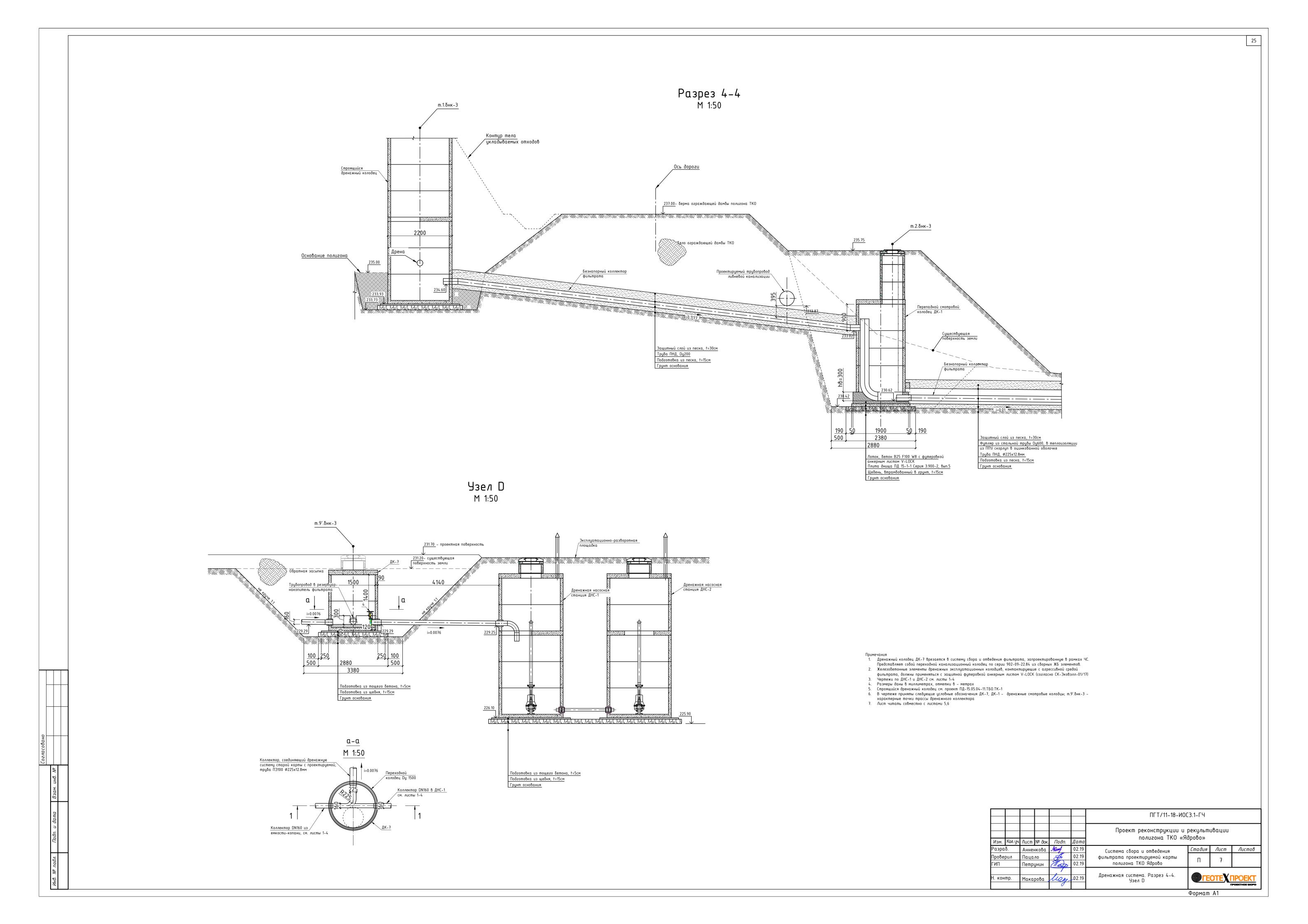
Изм.	Кол.уч.	Лист	№ док.	Подпись	Дата

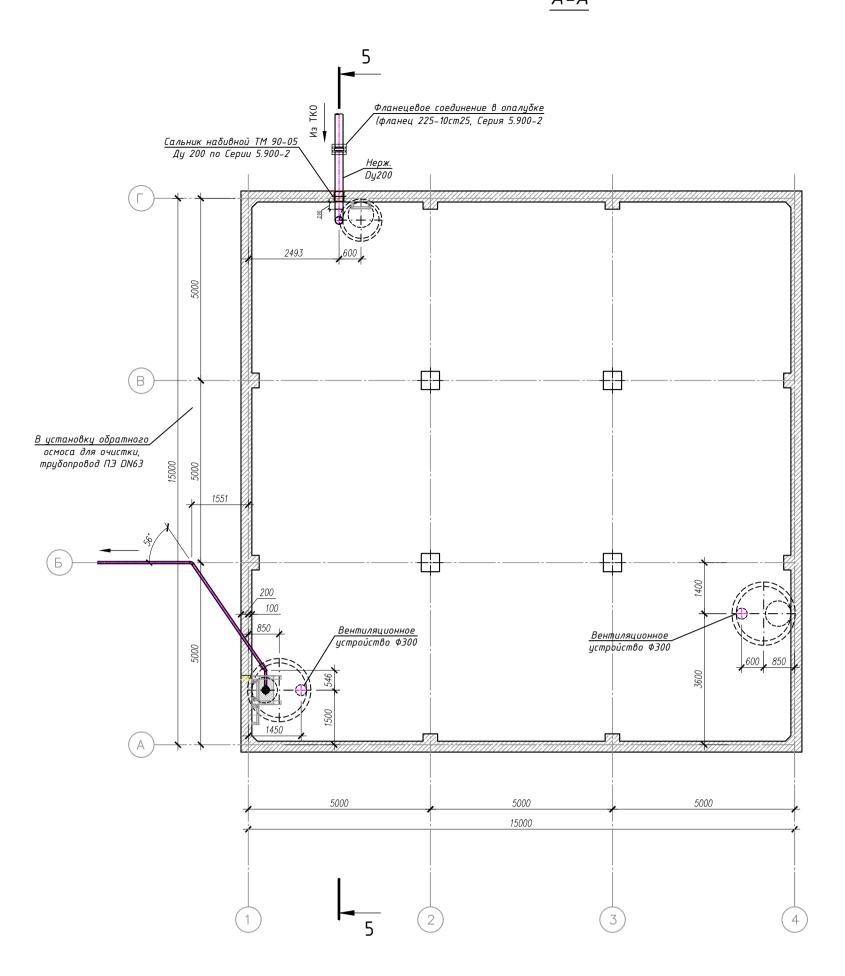


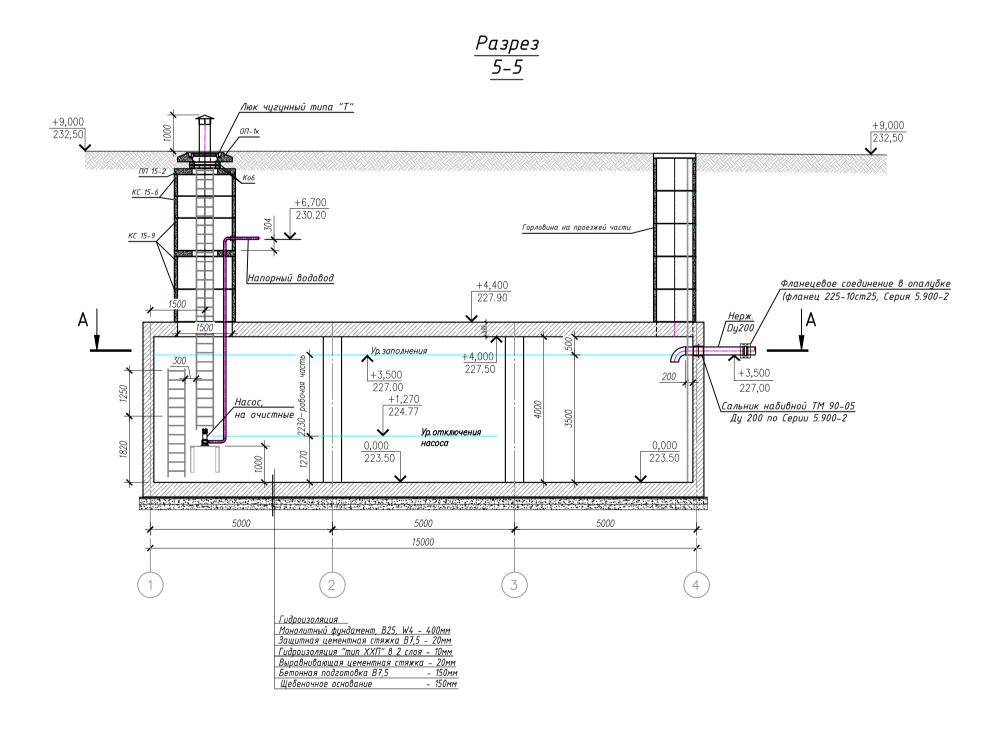

№ поз.	Наименование	Ед. изм.	Кол- во	Примечание
1	Выемка грунта траншеи для укладки трубы коллектора	M ³	2200	
2	Подготовка основания под трубу из песка, засыпка песком пазух	M ³	465	
3	Крепление гребня и откосов дамбы обвалования щебнем, толщина слоя t=10cм	M ³	140	
4	Обсыпка трубы коллектора местным грунтом в местах, где не высота обр.засыпеи меньше глибины промерзания	M ³	1700	


Примечания


- 1. Данный лист читать совместно с листами 1, 3 2. Номера и позиции материалов см. спецификацию, лист 3
- 3. Размеры и отметки даны в метрах
- 4.Под дорогами водовод прокладывается в гильзе из стальной трубы диаметром D 219х4мм 5. Узел А см. лист 4


ПГТ/11–18–ИОСЗ.1–ГЧ				
полигона ТКО «Ядрово»				
истов				
EKT HOE SIOPO				

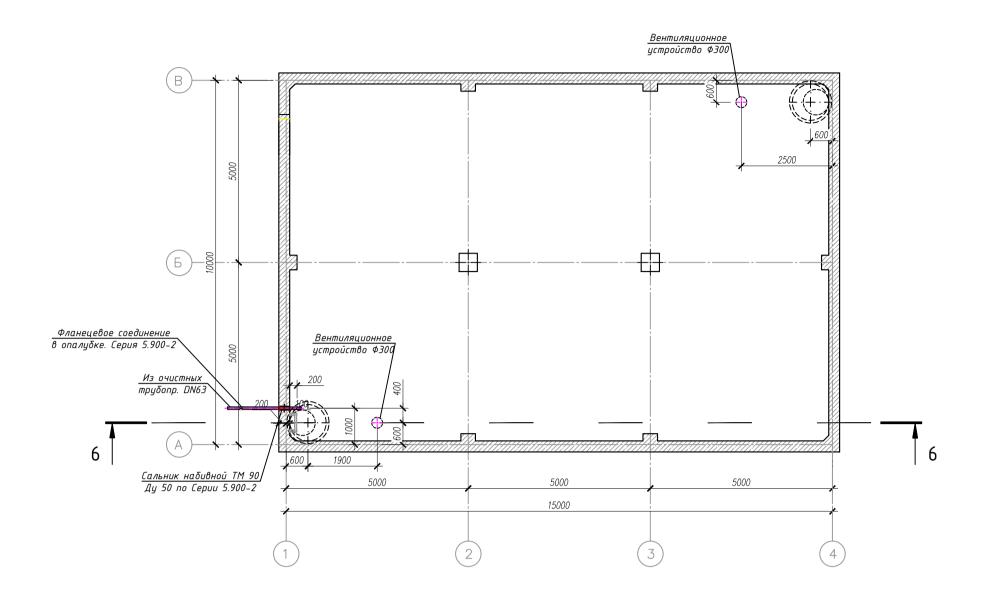




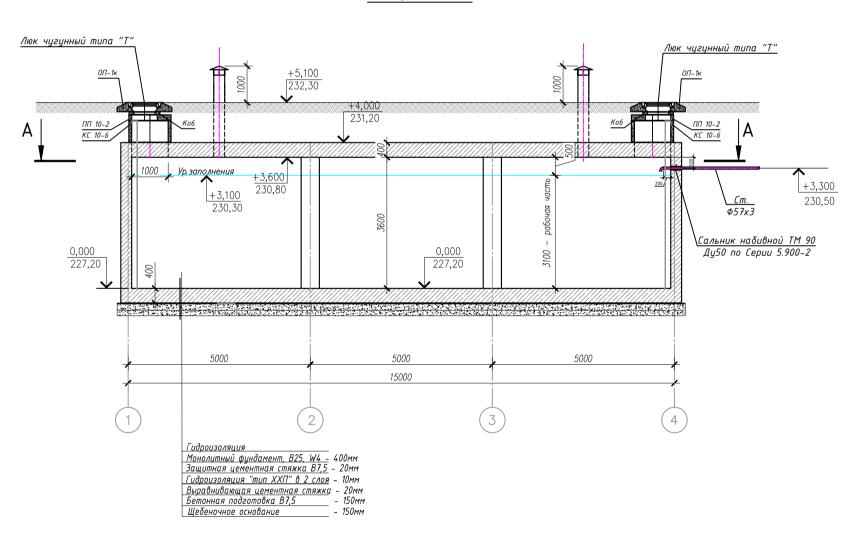
Резервуар-накопитель фильтрата. План $\Delta = \Delta$

Гидроизоляция

Согласовано


 \supset

Инв.


- 1. Резервуар-накопитель фильтрата возводится из монолитного железобетона. Эксплуатационные горловины из сборных Ж/Б элементов серии 3.900.1–14. Горловина эксплуатационно-смотрового колодца, расположенная на проезжей части, выполняется по типовому проекту ТМП902–09–46.88, АС 24, АСЗ2
- Забор фильтрационных стоков из резервуара-накопителя производится с помощью стационарно установленного насоса. Информацию по насосу и напорному трубопроводу см. раздел ИОС 7.1. (Устройство системы по сбору и по очистке фильтрата)
- 3. Для внутренних поверхностей резервуара-накопителя фильтрата предусматривается защитная футеровка, стойкая к агрессивной среде накапливаемой жидкости
- 4. Номер резервуара на Генплане 4.

						ПГТ/11-18-ИОО	З.1–ГЧ		
						Проект реконструкции и р полигона ТКО «Яд		ации	
Изм.	Кол уч	/lucm	№ док.	Подп.	Дата	nondeand the who			
Разра	δ.	Аннен	нкова	Alexand	02.19	Система сбора и отведения	Стадия	Лист	Листов
Прове	pu <i>r</i> ı	Паца	/10	Fr.	02.19	фильтрата проектируемой карты	П	8	
ГИП		Петр	НПН	Testo	02.19	полигона ТКО Ядрово	11	0	
						Decembrian dua magna Ne/ Dagu M 1.100			
Н. кон	mp.	Мака	рова	lake	02.19	Резервуар фильтрата №4. План. М 1:100. Разрез 5-5		OTEXI	TPOEKT
						1 d3pc3 3-3			POEKTHOE SIOPO
	Формат А2								

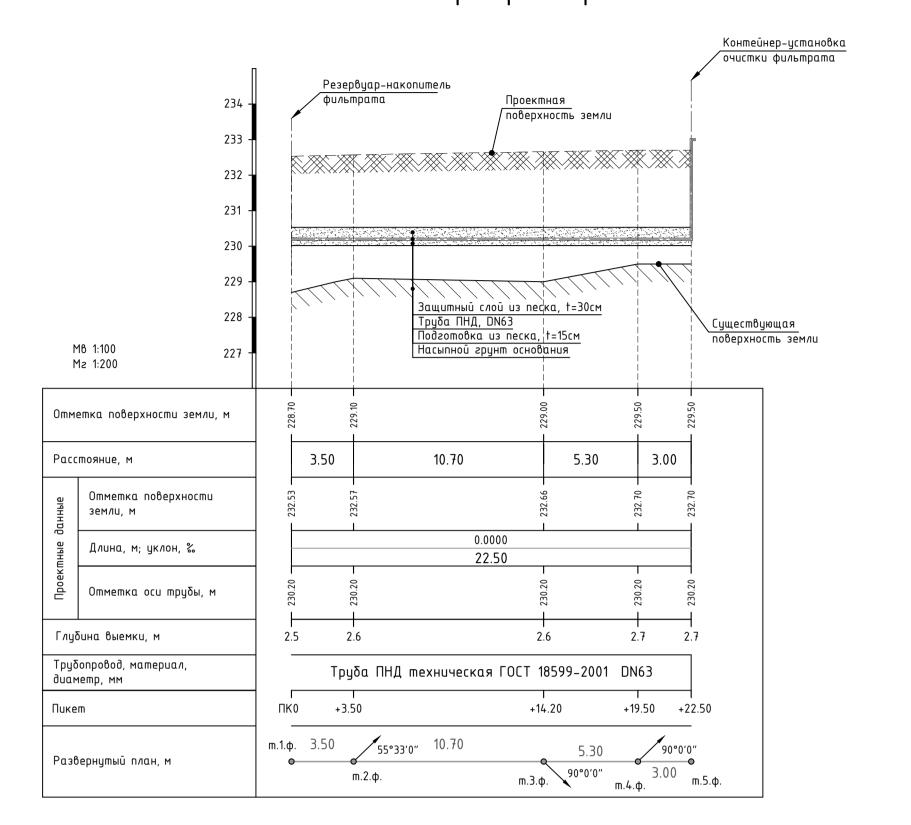
<u>Резервуар-накопитель пермеата. План</u> <u>A-A</u>

Разрез 6-6

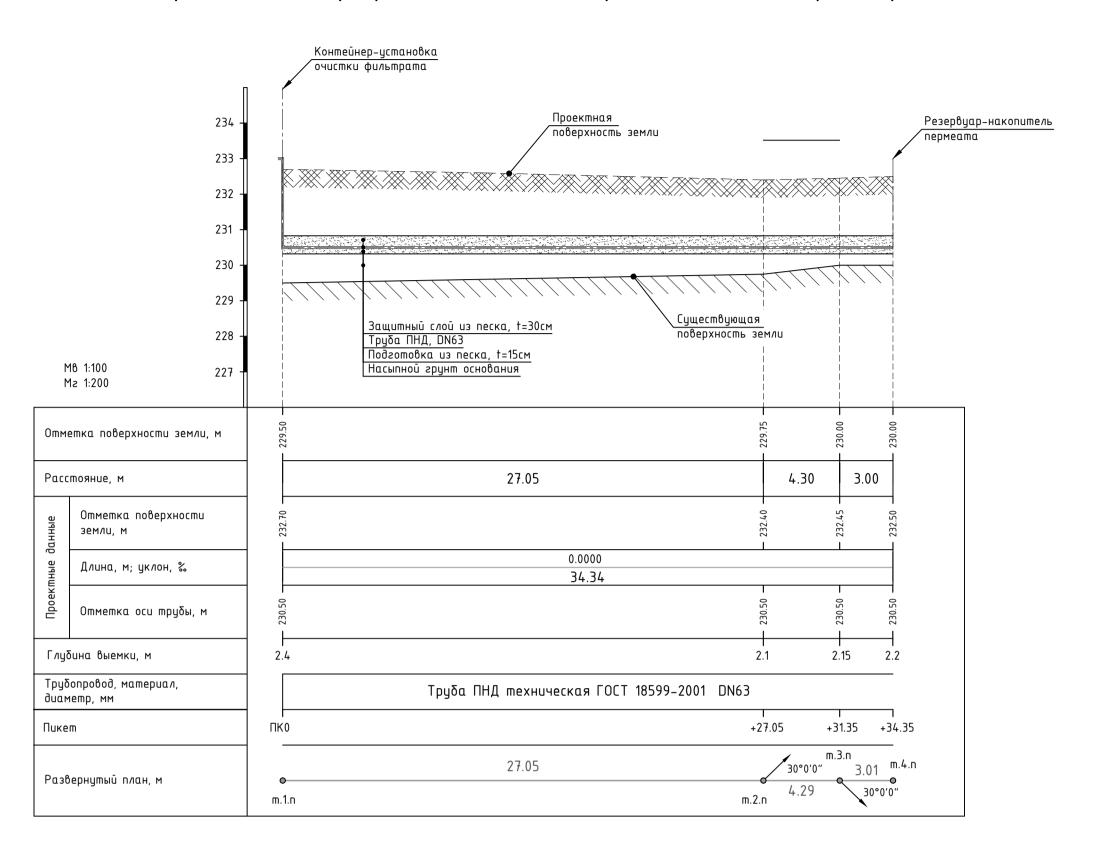
Гидроизоляция

Согласовано

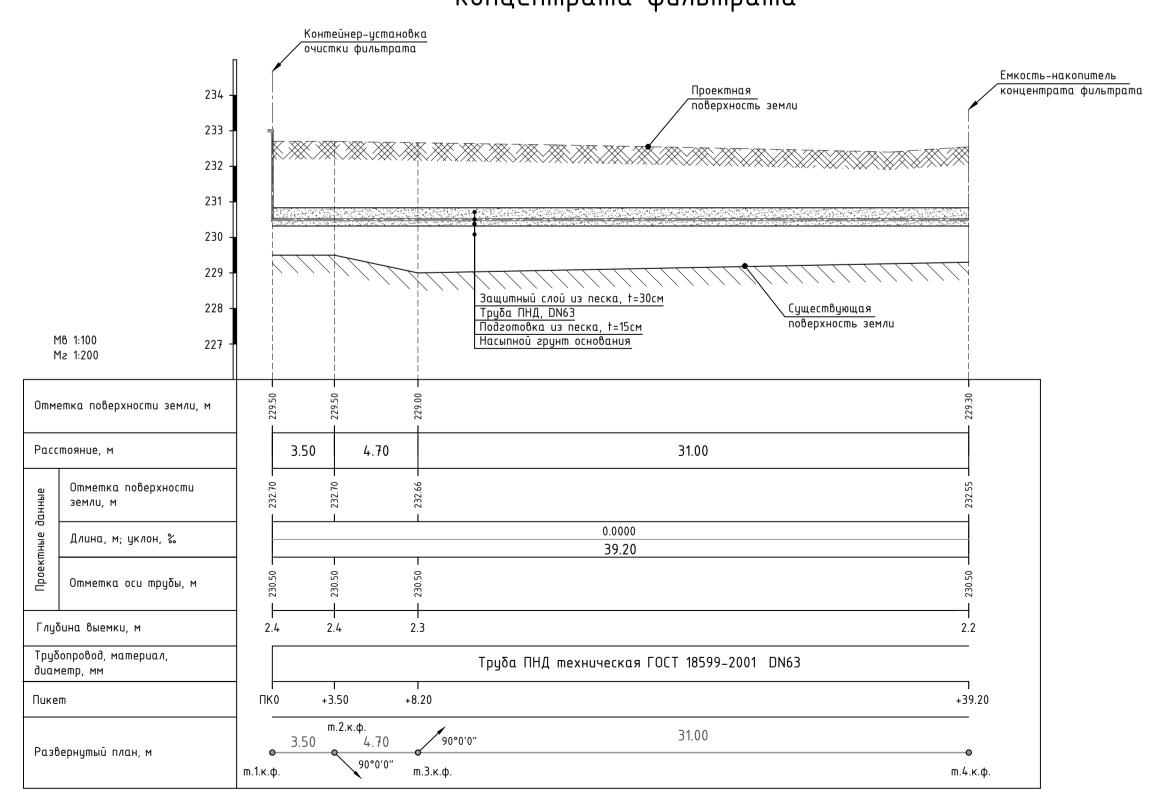
Подп. и дата


Инв. № подл.

- 1. Резервуар-накопитель очищенных стоков (пермеата) возводится из монолитного железобетона. Эксплуатационные горловины из сборных Ж/Б элементов серии 3.900.1–14.
- 2. Номер резербуара на Генплане 5 3. Горловина эксплиатационно-смотрового
- 3. Горловина эксплуатационно-смотрового колодца, расположенная на проезжей части, выполняется по типовому проекту ТМП 902-09-46.88, АСЗ2

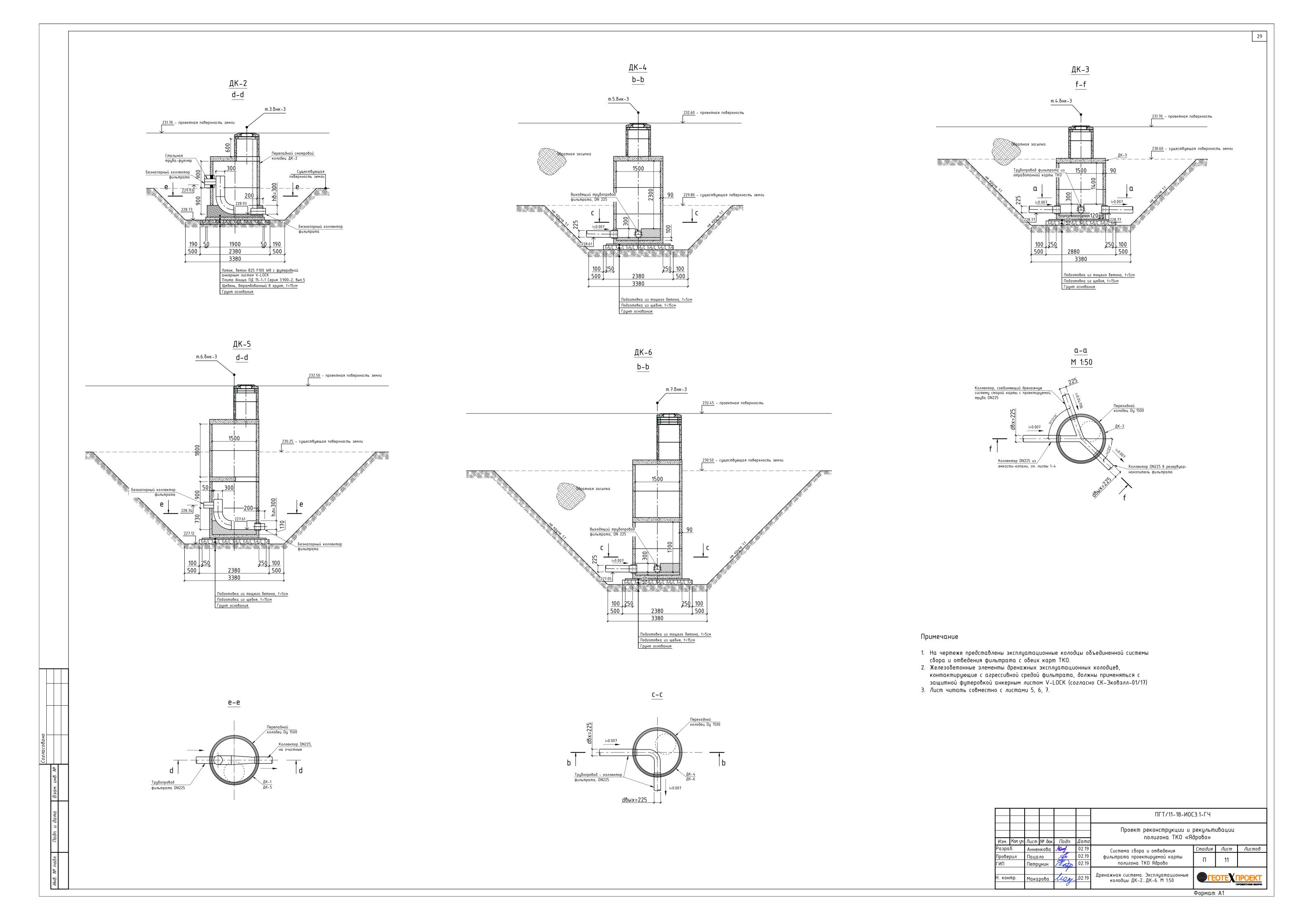

						ПГТ/11–18–ИОСЗ.1–ГЧ				
Изм.	Кол уч	/lucm	№ док.	Подп.	Дата	Проект реконструкции и рекультивации полигона ТКО «Ядрово»				
Разра	δ.	Аннен	нкова	Maring	02.19	Система сбора и отведения	Стадия	Лист	Листов	
Прове ГИП	pu <i>r</i> i	Паца Петрі		Ar Medio	02.19 02.19	фильтрата проектируемой карты полигона ТКО Ядрово	П	9		
Н. кон	mp.	Мака	рова	lian	02.19	Резервуар-накопитель очищенных стоков (пермеата) №5. План. М 1:100. Разрез 6-6	POEKT TPOEKT			

Формат A2


Продольный профиль по оси напорного коллектора фильтрата

Продольный профиль по оси напорного коллектора пермеата

Продольный профиль по оси напорного коллектора концентрата фильтрата



Примечание

1. На чертеже представлены продольные профили по трубопроводам, соединяющим Контейнерную Установку очистных сооружений с емкостями-накопителями фильтрата, очищенных стоков, концентрата

2. Лист читать совместно с листами 5, 7, 10, 11.

						ПГТ/11-18-ИОСЗ.1-ГЧ			
	IV.					Проект реконструкции и рекульт полигона ТКО «Ядрово»		ивации	
Изм. Разра	Кол уч				<i>Дата</i> 02.19		Cmadua	//usm	//usmaß
<u> </u>			нкова	Albert	02.19	Система сбора и отведения	Стадия	Лист	Λυςποβ
Прове ГИП	:pu/i	Паца Петрі		Testo	02.19	фильтрата проектируемой карты полигона ТКО Ядрово	П	10	
Н. контр. Макарова			02.19	Дренажная система. Продольные профили по оси коллекторов фильтрата, пермеата, концентрата фильтрата.	© [E		POEKT		
	Формат А1								

Приложение 1

117405, г. Москва,

Варшавское шоссе д.141, стр.80, офис 401

офис тел.: +7 (499) -391-82-01

E-mail: office@polycorr.ru

сайт: http:// polycorr.ru

Исх. №443 от 17.12.2018

Технико-коммерческое предложение на изготовление аккумулирующего резервуара Polycorr-AP-3000_11400, объемом $V=80~\text{m}^3$

Объект: «Ядрово»

Общество с ограниченной ответственностью ПК «Поли-Групп»

Юридический адрес: 117405,г.Москва,Варшавское шоссе д.141, стр.80, офис 401
Почтовый адрес: 117405,г.Москва,Варшавское шоссе д.141, стр.80, офис 401
ИНН\КПП 7729494390/772901001, ОГРН 1167746194142, ОКПО 00112236,
ОКАТО 45268579000, ОКВЭД 51.54.2
р/с 40702810038000101761, Банк ПАО Сбербанк г.Москва кор/с 30101810400000000225, БИК 044525225

Варшавское шоссе д.141, стр.80, офис 401

офис тел.: +7 (499) -391-82-01

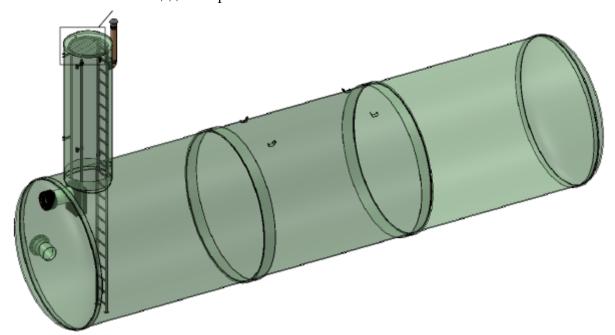
E-mail: office@polycorr.ru caйт: http://polycorr.ru

1. Описание Polycorr-AP

Емкостное оборудование марки Polycorr представляет собой резервуары различного исполнения и назначения, предназначенные для накопления и дальнейшей перекачки поверхностных, хозяйственно-бытовых и других сточных вод, накопления питьевой и технической воды, воды для пожарных нужд, хранения иных жидкостей.

Емкости могут быть подземного и наземного назначения; изготавливаются из стеклопластика, не поддаются химическому воздействию, выдерживают холод и солнечное излучение. По желанию заказчика возможна установка насосных станций с автоматическим управлением и дополнительным оборудованием.

Преимущества применения стеклопластика:


более долговечный материал по сравнению с полипропиленом, бетоном и металлом;

монтаж занимает меньше времени и денежных затрат (по сравнению с железобетонными резервуарами);

возможна автоматизация процесса заполнения резервуара и подачи водык потребителю;

эстетичный внешний вид установки;

экономия площади застройки.

 $Pucyнok\ 1 - Polycorr-AP$ (не является чертежом к данному $TK\Pi$)

Общество с ограниченной ответственностью ПК «Поли-Групп» Юридический адрес: 117405,г.Москва,Варшавское шоссе д.141, стр.80, офис 401 Почтовый адрес: 117405,г.Москва,Варшавское шоссе д.141, стр.80, офис 401 ИНН\КПП 7729494390/772901001, ОГРН 1167746194142, ОКПО 00112236,

ОКАТО 45268579000, ОКВЭД 51.54.2 р/с 40702810038000101761, Банк ПАО Сбербанк г.Москва кор/с 30101810400000000225, БИК 044525225

Варшавское шоссе д.141, стр.80, офис 401

офис тел.: +7 (499) -391-82-01

E-mail: office@polycorr.ru

сайт: http:// polycorr.ru

2. Коммерческое предложение

№ п/п	Наименование	Кол -во	Стоимость, руб.		
1	Аккумулирующий резервуар Polycorr-AP- 3000_11400, объемом V = 80 м³, для глубины залегания подводящей трассы 3000 мм, в комплекте: - корпус D=3000 мм, L=11400 мм; - шахта обслуживания D=1000/600 мм; - крышка D=600 мм; - лестница стационарная; - вентиляционный сток с дефлектором.	2	2 693 000,00	5 386 000,00	
Итого	о (с НДС)		5 386	000,00	

Примечания:

Цены действительны в течении 10 дней с момента выставления коммерческого предложения

Цена указана с учетом доставки до Вашего объекта

Цена указана в рублях, включая НДС (18%)

Оплата: Предоплата 50%, остальные 50% по факту готовности к отгрузке.

Срок изготовления корпуса: 5 недель.

С уважением,

Управляющий

ООО ПК «Поли-Групп»

Д. С. Землянский

Руководитель проектов: Ганьшин Алексей, моб: +7929-915-39-19

E-mail: gan@polycorr.ru

Инженер отдела КНС и ОС: Боковня Сергей, E-mail: knsmsk@polycorr.ru

Общество с ограниченной ответственностью ПК «Поли-Групп» Юридический адрес: 117405,г.Москва,Варшавское шоссе д.141, стр.80, офис 401 Почтовый адрес: 117405,г.Москва,Варшавское шоссе д.141, стр.80, офис 401 ИНН\КПП 7729494390/772901001, ОГРН 1167746194142, ОКПО 00112236, ОКАТО 45268579000, ОКВЭД 51.54.2

р/с 40702810038000101761, Банк ПАО Сбербанк г.Москва кор/с 3010181040000000225, БИК 044525225

Расчет устойчивости бортов оврага в створе прокладки трубопроводов фильтрата и ливневой канализации на эстакаде

1. ОБЩИЕ ДАННЫЕ

- Расчет устойчивости бортов оврага выполнен в соответствии со строительными нормами и правилами, действующими на территории Российской Федерации.
- 1.2. Сейсмичность района и площадки была принята 6 баллов на основе карты общего сейсмического районирования территории Российской Федерации OCP-97 A и в соответствии со СП 14.13330.2010.
- 1.3. Расчетные характеристики физико-механических свойств грунтов, слагающих борта оврага приняты по материалам «Технического отчета по результатам инженерно-геологических изысканий...», выполненного ООО «Комплекс Проект» в 2018 году.
- 1.4. Расчеты устойчивости бортов оврага выполнены для круглоцилиндрических поверхностей скольжения по программе «Расчет устойчивости земляных откосов» версии 5.02, разработанной институтом «Гидропроект», в которой используются методики Р.Р. Чугаева ("Весового давления"), Г. Крея и К. Терцаги.

2. РАСЧЕТНЫЕ ПАРАМЕТРЫ СЕЧЕНИЯ ОВРАГА

- 2.1. Расчет ведется для сечения оврага по оси прокладки трубопровода фильтрата между точками т.2.бнк-3 и т.3.бнк-3 (см. чертеж ПГТ/11-18-ИОСЗ.1-ГЧ л.6) Северный борт (у новой карты ТКО) в расчетном створе имеет максимальную отметку 232.90м. Южный борт (рекультивируемая карта ТКО) 229.8м. Максимальный перепад высот поверхности земли по оси трубопровода в принятом для расчета интервале составляет 9 метров. Северный борт имеет уклон i=0.1648 (1:m=1:6), южный i=0.3451 (1:m=1:2.9).
- 2.2. Северный борт сложен грунтами ИГЭ 4, песками крупными до гравелистого желтый, средней степени водонасыщения, с включениями гравия, гальки и щебня, плотными, ИГЭ 4 в расчете принят неограниченной мощности; южный борт ИГЭ1, суглинками красновато-коричневыми, полутвердыми,

- с редким включением гравия, с прослоями песка ср. крупности; ИГЭ2 суглинками красновато-коричневыми, полутвердыми, с редким вкл. гравия, с прослоями песка ср. крупности, грунтами ИГЭ4, в расчете принятыми неограниченной мощности; в расчете южного борта принята схема геологического строения из двух инженерно-геологических элементов: ИГЭ2, ИГЭ4; из ИГЭ 2; русло ручья представлено водонасыщенными грунтами ИГЭ 4.
- 2.3. Расчетный уровень грунтовых вод принят по скважине 10.
- 2.4. Расчеты устойчивости бортов оврага выполнены для одного расчетного случая без учета сейсмики и с кривой депрессии.
- 2.5. Расчетные сечения содержат два инженерно-геологических элемента. Исходные физико-механические характеристики грунтов приводятся в табл.2.1

Табл. 2.1.

	ФИЗИКО-МЕХАНИЧЕСКАЯ ХАРАКТЕРИСТИКА						
	Плотн т/і	ЮСТЬ, М ³	Угол	Сцепление, т/м²			
НОМЕР И НАИМЕНОВАНИЕ ЭЛЕМЕНТА	При естественной влажности, Ye	При полном водо- насыщении, Үн	внутреннего трения, град				
2 – суглинки полутвердые с прослоями песка ср. крупности	2.11	2.11	20.0	2.80			
4 – пески крупные до гравелистого плотные	1.94	2.14	31.0	0.00			

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ

3.1. В соответствии с требованиями СП 39.13330.2012, нормативный (минимальный) коэффициент устойчивости равен:

$$k_s = \frac{\gamma_n \cdot \gamma_{fc}}{\gamma_c} = \frac{1.25 \cdot 1.00}{0.95} = 1.32$$

3.2. Результаты расчетов приведены в таблице 3.1 и на рис.3.1., 3.2.

Табл.3.1.

Метод расчета	Результат расчета К _{min}		
111	Северный борт	Южный борт	
Г. Крея	2.45	2.72	
К. Терцаги	2.43	2.54	
Р.Р. Чугаева	2.53	2.71	

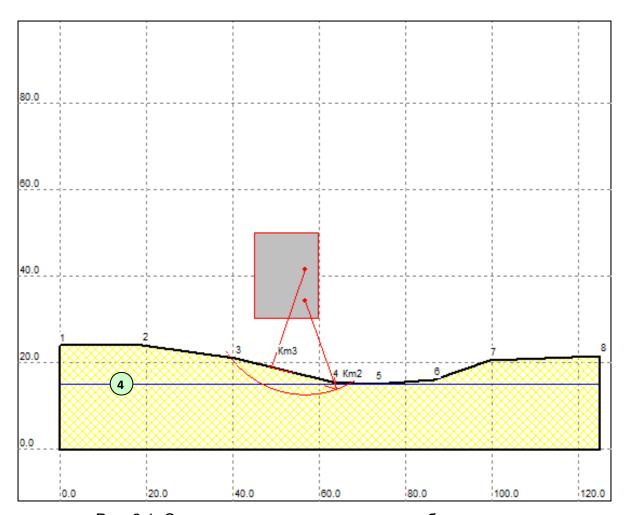


Рис. 3.1. Опасные кривые сдвига северного борта оврага

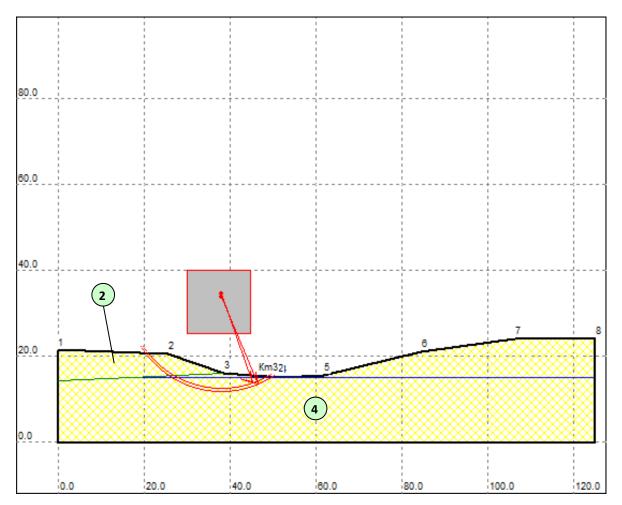


Рис. 3.2. Опасные кривые сдвига южного борта оврага

4. **ВЫВОДЫ**

4.1. Выполненные расчеты показывают, что устойчивость бортов оврага обеспечивается п.3.2. табл. 3.1.

ИСПОЛЬЗОВАННЫЕ МАТЕРИАЛЫ

- 1. СП 58.13330-2012 Гидротехнические сооружения. Основные положения проектирования
- 2. СП 39.13330-2012 Плотины из грунтовых материалов
- 3. СНиП 23.13330-2011 Основания гидротехнических сооружений
- 4. СП 14.13330.2014 Строительство в сейсмических районах. Минстрой России. М.,2014.
- Технический отчет по результатам инженерно-геологических изысканий для разработки проектной документации. ООО «Комплекс Проект». Москва 2018 г., Арх.№ 11-18-ИГИ.

Определение максимально допустимой длины пролета между опорами для футляра трубопровода фильтрата на участке надземной прокладки

1. <u>Исходные данные:</u>

Трубопровод фильтрата – труба ПЭ 80 SDR 17.6 S 8.3 225x12.8мм, ГОСТ 18599-2001, вес – 8.74 кг/п.м.

Фильтрат – заиленная твердыми мелкими частицами жидкость, плотность у_ф=1010кг/м³.

Футляр – труба стальная 426х9мм, ГОСТ 10704-91 в теплоизоляции, вес трубы – 92.55 кг/п.м., модуль упругости материала трубы футляра (сталь) $E=2.1x10^6$ кг/м².

Теплоизоляция – ППУ скорлупы в защитной оболочке из оцинкованной рулонной стали (ширина ленты 1000мм, толщина 0.63мм, вес взят по ГОСТ 8596), толщина изоляции – 60мм, плотность – 60 кг/м³, вес – определятся расчетом.

Заполнение межтрубного пространства цементно-песчаным раствором М-50 (плотность 1800кг/м³)

2. Максимальный прогиб трубы

$$[f]$$
= 0.11 x Dy = 0.11 (42.6 – 2 x 0.9) = 4,488 cm

Вес трубопровода ПЭ трубопровода при полном заполнении сечения трубы, в футляре в теплоизоляции, с заполнением межтрубного пространства цементно-песчаным раствором M-50

$$q = n_1 x q_{TP.\Pi \ni} + n_2 x q_{\oplus} + n_3 x q_{CT.TP.} + n_4 x q_{T.изол.} + n_5 x q_{U.\Pi.p-p.}$$

где n_1 = 1.2, n_2 = 1.0, n_3 = 1.05, n_4 = 1.2, n_5 = 1.1 коэффициенты надежности по нагрузке (табл.7.1 СП 20.13330.16 «Нагрузки и воздействия»).

- $q_{TP.\Pi \ni} = 8.74 \text{ KF/}\Pi.\text{M}.$
- $q_{\Phi} = (\pi D^{2*} y_{\Phi})/4 = (3.14 \times 0.1994^2 \times 1010)/4 = 31.52 \text{ } \text{кг/п.м.}$
- $q_{ct.tp.} = 92.55 \text{ K} r/\pi.\text{M}.$
- $q_{\text{т.изол}} = \pi D_{\text{cp}} * t_{\text{из}} * y_{\text{из}} + q_{\text{оц.ст.обол}} = 3.14x ((0.426x 2+0,12)/2)x 0.06x 60 + (1.715x4.95) = 5.494 + 8.5 = 13.99 \text{ кг/п.м.}$
- $q_{\mu,\pi,p-p} = (3.14*(\varnothing^2_{BH}- \varnothing^2_{Hap})*y_{\mu,\pi,p-p})/4 = 3.14x(0,408^2-0,225^2)x1800/4 = 163.68 \text{ kg/m.m.}$

$$\mathbf{q}$$
 = 1.2x 8.74 + 1.0x 31.52 + 1.05x 92.55 + 1.2x 14 + 1.1x 163.68 = **336.02** κг/π.м = 3.36 κг/π.см.

3. Момент инерции сечения трубы относительно горизонтальной оси: $I = \pi * (D^4-d^4)/64 = 3.14x (0,426^4-0,408^4)/64 = 0.000256 \text{ m}^4 = 2.56x10^4 \text{ cm}^4$

$$I^4 = (f^* E^* I^* 76.8)/q = (4.488 \times 2.1 \times 10^6 \times 2.56 \times 10^4 \times 76.8)/3.36 = 55206.05 \times 10^8 \text{ cm}^4$$

$$I = 4 - \sqrt{55206.05 \times 10^8} = 1532.84 \text{ cm} = 15.33 \text{ m}$$

 $f_{\Phi} = (q^* I^4) / EI^* 76.8 = 3.36x 55206.05x 10^8 / 2.1x 10^6 x 2.56x 10^4 x 76.8 = 4.49 cm.$

Отношение фактического прогиба к внутреннему диаметру трубы футляра:

$$f_{\oplus}$$
 / Dy = 4.49/40.8 = 0.110